AD=A104 320 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF CIVIL EN6=~=ETC F/6 12/1

A TWO=-STEP APPROACH TO F!NITE ELEMENT ORDERING. (U)
AUG 81 S J FENVESs K H LA NO 001“-76'C-035“
UNCLASSIFIED R~81-130

| oe |
ap A
;xm

LEVEL™

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING

by

Steven J. Fenves

Kinche H. Law

A Technical Report of
Research Sponsored by
THE OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
Contract No. NO0014-76-C-0354

August 1981

Departmen: of Civil Engineering
Carnegic-Mellon University
Pittsburgk. Pannsylvama

R-81-130

MELECTE
&, SEP 17 1981

/ l

DTIC

AR

DEPARTMENT OF CIVIL ENGINEERING
CARNEGIE INSTITUTE OF TECHNOLOGY

Carnegie -Mellon University

| DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

81 Y

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING, |

o i s ¥ e

—— - »\) ,"’ ;7 o " . .
/r A s

/. Steven l. / Fenves

Kincho H. /Law !

—

r

A Technical Report of
Research Sponsored by
THE OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
Contract No,_\'1§106614-76—c—0354
4 /"_" . -

AT P BT b

Dist | Special

A |

Availebility Codes
jAvail and/or

T i v

R-81-130

oo et aged

. Augmeee981 oy
Accession For .
NTIS GRA&I X
DTIC TAB O
Unannounced] Department of Civil Engineering
Justification | Carnegie-Mellon University
—_ e Pittsburgh, Pennsylvania
By . _
| Distrituticen/

Loy
ST

Table of Contents

Summary 1
Introduction 1
Graph Theory Notation and Sparse Matrix Study 3
Symmetric Matrices and Finite Graphs 3
Finite Element Mesh and Its Solution Graph s
Matrix Factorization and Its Graph Theoretic Model 6
The Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms 8
A Two-Step Approach (o Finite Element Ordering 10
Representation of Finite Element Connectivity 10
Ordering the Finite Elements 12
Ordering the Nodal Variables 12
Experimental Results 14
Discussion 16
Acknowledgement 18
References 19
Figures 20
Tables 20
Appendix 1. Fortran Computer Program for Labelling the Nodal Variables 32

Appendix I1. Fortran Computer Program for Generating the Adjacency Structure Pair 34
of Element-Element Connectivity

Figure
Figure
Figurse
Figure
Figure
Figure

Figure
Figure

-
O

U

)

i

LIST OF FIGURES

Finite Element Mesh and Its Associaled Finite Element Solution Graph
Matrix Factorization

Finite Element Model and Its Associated Fimte Element Connectivity Graph
Finite Element Models with Uncommon Connectivities

Ordering the Finite Elements by the Cuthill-McKee Algorithm

The Node Ordering of a 5 by 5 Regular Mesh with 10-Node Triangular
Finite Elements

Finite Element Models

Exampies of Adjacency Structure Pair

21
22
23
24
25
26

27
29

iii

LIST OF TABLES

Table 1: Extension Time (msec) for RCM Algorithm and Two-Step Ordering Scheme 30
Table 2: Structure of Matrix Factor L Resulting from the RCM algorithm and the 31
Two-Step Ordering Scheme

SUMMARY

A two-slep approach to finite element ordering is introduced. The scheme involves ordering of
the finite elements first, based onr their adjacency, followed by a local numbering of the nodal
variables. The ordering of the clements is performed by the Cuthill-McKee algorithm. Ths
approach takes into consideration the underlying structure of the finite element mesh, and may be
regarded as a “natural” finite clement ordering scheme. The experimental results show that this
two-step scheme is more efficient than the reverse Cuthill-McKee algorithm applied directly to the
nodes, in terms of both execution time and the number of fill-in entries, particularly when higher
order finite elements are used. In addition to its efficiency, the two-step approach increases
modularity and flexibility in finite element programs, and possesses potlential application to a

number of finite element solution methods.

INTRODUCTION

The use of finite element methods typically involves solving a system of equilibrium equations :
Ku=R 1)

where u and R are, respectively, the displacement and the loading vectors. K 1is the global
stiffness matrix which is often symmetric, positive definite, and populated with many zeros. In
the solution process, it is important to take into account the structure of the matrix K, ie. the

pattern of the zero and nonzero entries so that the computational effort is minimized.

The solution process for solving Equation 1 can be divided into four separable tasks'® :

1. Ordering - to find a proper permutation matrix P, such that the symmetric permuted
matrix PKP' has a desirable structure.

2. Storage allocation - to determine the necessary information about the structure of the
matrix factor of PKP' and to set up the storage scheme.

3. Numeric factorization - to decompose the permuted matrix PKP' into a iriple matrnix
product LDL".

4. Solution - to compute the solution vector u successively by a forward substitution,
z = LY (P'R), and a backward substitution, u = P(L*D"z).

The identification of these four separabie tasks not only encourages software modularity, but also

facilitates the theoretical study of sparse matrices.- This paper focuses on the first task, that of

ordering of a system of equilibrium equations resulting from finite element discretization.

When the matrix K is decomposed into its matrix factors L and D, it typically suffers some
fill-in; that is, the filled matrix, F = L + L', has nonzeros in positions which are zero in K. One
objective in ordering a matrix is to minimize the number of these fill-in entries. By doing so,
the computing cost may also be reduced since the amount of computation depends on the number

of ponzeros in the matrix factor L.

A finite clement mesh consists of a collection of finite elements which are connected at their
common boundaries. The discretization of the mesh and the finite clements are selected so that
the behavior of the physical structure under examination can be properly modelled. The nodal
variables are then defined on the finite element mesh; their number depends on the type of finite
clements used. Traditionally, most ordering schemes have been developed for ordering directly the
nodal variables and, hence, the equilibrium equations in 1. Very little effort has been reported in
developing ordering schemes which include consideration of the underlying topological structure of

the finite element mesh

One solution scheme specifically designed for solving a system of equations resulting from finite
element problems is the frontal solution method'*. This method is often considered as the most
“patural” solution scheme since it operates directly on the underlying structure of the finite
element mesh. In this solution scheme, the finite elements are assembled and entered into the
solution one at a time. A nodal variable is eliminated as soon as all the neighboring finite
elements incident to it are available. The remaining assembled nodal variables. which are not yet

ready for elimination. are retained in the “front™. or "active fromt".

Another solution scheme which is similar to the frontal solution method 1is the so-called
generalized element method?®. In this method, the nodal variables of an active front are treated
as a superelement. Multiple fronts are allowed, and each fromt is treated as a superelement.
This method has recently attracted altention from numerical analysts®. The merit of the frontal

solution and the geperalized eclement methods is that both can be extended to include

considerations of auxiliary storage in a simple manner.

Obviously, the efficiency of the frontal solution and the generalized element methods depends on
the order in which the finile elements are numbered. The ordering of the nodai variables 1s
implicitly imposed by the order in which the finite clements are processed. To the authors’
knowledge, there have not been any studies reporied for ordering the finite elements directly. In

this paper, we attempt to examine the feasibility of ordering the finite elements.

It will be shown that ordering the finite elements has considerable computational advantage over
ordering the nodal variables, but that ordering the finite elements alone does not compietely define
the permutation matrix P. It is therefore necessary to include into the ordering scheme a local
ordering strategy for nuxnbering the nodal variables of each finite element so that the number of
fill-in entries can be minimized. This “two-step” approach, which includes the ordering of the

finite elements as well as of the nodal variables, is the subject of this paper.

GRAPH THEORY NOTATION AND SPARSE MATRIX STUDY
The use of graph-theoretic approaches has found many applications in sparse matrix study.
Although few results from graph theory are directly applicable to the study of sparse matrices,
the graph representation is, nonetheless, a powerful tool to characterize the structure of a sparse

matrix.

Symmetric Matrices and Finite Graphs
A finite undirected graph G=(V,E) consists of a finite set V of n elements, called nodes, and
a set E of unordered pairs of distinct nodes (vi.vj). called edges. For any node v in G, the set

of nodes adjacent to v, adjtv), is defined as
adjtv) = { v. ¢ V | (vw) ¢ E }.
1 1

The number of nodes in adj(v), denoted by iadj(v)i, is called the degree of v. The deficiency
of v, def(v), is the set of distinct pairs of nodes in adj(v) which are not themselves adjacent. A
graph is complete if every pair of nodes is adjacent. A subgraph G'=(V'.E’) of G is a graph
for which V' < V and E' < E. A complete subgraph is called a c/ique. A section graph

G(V") i1s a subgraph G=(V'.E(V")) induced by a node set V', where

E(V) = { (v,v) ¢ E | v_l.vj e V')
i)
If a set of nodes V* is deleted from the graph G=(V,E), the section graph G(V\V") is obtained

from G by removing the nodes V' together with their incident edges.

A (simpie) path {va' vers vj} is a sequence of distinct nodes and continuous edges leading from
v, to vj such that there are no repeating edges. A graph G is said to be connected if there is
at least one path between every pair of distinct nodes in G; otherwise, G is disconnected A
connected subgraph is called a component. The distance d(vi,vj) between two nodes v and vJ
in a connected graph is the pumber of edges in the shortest path joining nodes \ and v). The

eccentricity e(v) of a mode v is then given by
e(v) = max { d(v,v) ! voev .

Tbe diameter 3(G) of the graph G=(V.E) is defined as
6(G) ~ max { elv), ve V L

A node v is said to be a peripheral node if e(v) = 6(G).

For a graph G=(V.E) with n nodes, an ordering {or /abel/ling) of V is a bijection (a one-to-

one onto mapping) :
a: {12 ...,n} {=>V.

The ordered graph of G is demoted by G_ = (V,E,z). The integer, ranging from 1 to n,
a

assigned to a node by the ordering is called the number or /abel of that node.

The notation of a /eve/ structure® is commonly used to describe the properties of many
ordering schemes. A level structure LS of a graph G is an arrangement of the nodes of G into
m levels, ordered LS:’ LSm. such that nodes at a given level LSk are connected to no nodes
other than LSH, LS‘i and LSM. For a node v ¢ V, there corresponds a level structure rooted
at v. The levels of the rooted level structure are delermined by

1. assigning LSl = {v}, and

2. for X > 1, assigmng to LSk the set of nodes adjacent to nodes in LSH which have

not yet been included in any previous levels.

Given an n by n symmetric matrix K. there corresponds to it a finite graph G=(V,E), where a

node v e V denotes the i® row (or column) of the matrix K. and an edge (v.v) ¢ E
1 L

symbolizes an offdiagonal nonzero entry KU_ (= K,-.)‘ An ordering of the graph G of matrix K 1s
equivalent 1o a symmetric permutation PKP', where P is an o by n permutation matrix. The
unordered graphs (in which nodes are not labelled) of K and PKP' are the same. but the node

oumbers of the associated ordered graphs are different.

Finite Element Mesh and Its Selution Graph

A finite element mesh is a collection of finite elements in which the adjacent finite elements
are joined at their common boundaries or vertices. There is a node at each vertex of the finite
clement mesh. For finite elements of higher order, where higher order polynomial interpolation
functions are used, there may also be nodes lying along the sides or on the faces of the fimite
elements, and/or located internally within the finite element itself. The nodes situated at the
interior of the finite element are referred as the /nterna/ variab/es, and the nodes located along

the boundaries are called the external/ variables.

Associated with each node is a set of variabies corresponding to the degrees of freedom defined
at that node. This set of variables, in turn, corresponds to a submatrix m the global stiffness
matrix, which is typically full. During assembly and solution. this submatrix can conveniently be
treated as a single entity. For simplicity, the set of variables at a node is referred as the noda/

variable.

The finite clement mesh can be transformed directly into the finite graph G representing the
structure of the global stiffness matrix. We call this graph a finite e/ement solution graph.
or, simply. a so/ution graph (1o distinguish it from the finite element connectivity graph to be
introduced below). The nodes of the solution graph are the nodal variables defined on the fimite
element mesh. The edges of the solution grapb are constructed bv making the nodes of each
finite element pairwise adjacent, since a nonzero entry Ku in the global stiffness matrix K mplies
that the i®® and the j'® nodal variables share at least one incident finite element. In other words.
if V' denotes the set of nodal variables belonging to one finite element. the section graph G(V)
of the solution graph G is a clique; the union of the cliques over all eclements defines the edges

in the solution graph. Examples of transforming a finite eiement mesh into s associated solution

graph are shown in Figure 1.

Matrix Factorization and Its Graph Theoretic Model
The factorization of K can be symbolically modelled using a graph-theorctic approach Ths
approach 1is particularly helpful in understanding how the fill-in entries are created during

factorization.

The most fundamental scheme of matrix factorization is one analogous to Gaussian elimination,
summarized in Figure 2. At the 1" step of the factorization, the i® column of L and the i
diagonal entry of D are computed, and the matrix K is condensed and modified to K. It 1s

in the condensation that the fill-in entries, if any, are created.

Using the finite graph representation of a sparse matrix, the factorization scheme can be
modelled graph-theoretically as a pode-elimination process’®. Upon elimination of node v, the
elimination graph Gv is obtained from G=(V.E) by :

1. deleting node v and its incident edges:

2. adding auxiliary (fill-in) edges such that all adjacent nodes of v form a chique.

That is,
Gv = (VAv, E(VAV) U def(v)).
For an ordered graph G a’ the elimination 1s a recursive process defined by
PG} = { Go = G, Gl. Gn-l }
where G is called the i'® elimination graph obtained by eliminating v from G - The fill~1n
1) -
edges created during the e¢limination of v denoted by fl, are the def(v) in G‘ - These fill-n
. -

edges correspond to the new nonzero entries introduced into the condensed matrix K“7!' at the i

step of the factorization.

In a fimite element sowution graph, the new chque formed by the ehimination of a node can be
treated as a new fiunile element. called a generalized element or a superelement®®. The node-
elimination process on a finile element graph can thus be interpreted as a series of transformation
of the {inite eclements into the superelements. This elimination model also suggests an interesting

characteristic related to higher order finite elements. Inlernal nodes of a hugher order element are

connected only lo the external nodes of that element. Furthermore, all nodes 1 a finile element
form a clique. Hence, if an internal node 1s eliminated before any of the exlernal nodes of the

same clement, there is po fill-in since the deficiency of the internal node 1s pull.

After elimination, the set of fill-in edges 1s given by
n-1

Q(Ga) = U f.
1=1

The filled graph GF. which represents the structure of the filled matrix, F = L + L' 15 defined

by

G_=(V, EU &G M.
F a

The node-elimination model was formally imntroduced by Rose!®. Since then, efforts have besn
made to develop efficient algorithms implementing the model'® ''. These algorithms have been
encoded into sparse matrix programs such as YMSL ™ and Sparspak’. The major application of
these algorithms is in the second task presenied in the Introduclion. namely to setl up the data

structure for storing the numeric entries of the matrix factors.

A node-addition model which sunulates the Cholesky factorization has recently been developed
by the authors'®. For this graph-theoretic model, nodes are added onto the filled graph GF. rather
than being eliminated from the original graph G,. The structure of the matrix factor L 1s
construcled one row at a time. When computing the entries of 2 particular row 1n L. the model
does not require any a priori information for the rows beyond the current row. Therefore, thus
model has the flexibility that the tasks of labelling a nodal variable, determining its row structure

in L, and computing the numeric entries of the row can all be performed simultaneously.

The execution times for the numeric factorization as well as the symbolic factorization of a
¢iven matrix K depend on the number of ponzeros in the matrix factor L. Therefore, 1t 1s
worthwhile to develop efficient algorithms to order the matrix K so that the number of fill-in
entries, or equivalently the number of nonzeros in L, is minimized. In the next section, two welil
known ordering algorithms, namely the Cuthill-McKee algorithm and the reverse Cuthill-McKee

algorithm. are discussed.

The Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms

Let K be an n by n symmetric matrix. For the i'® row of K, define
oK) =mm { j | K £01}
i 1)

and
ﬂltl{) = |- a‘(K).

The number ”,(K) denoles the column subscript of the first nonzero entry in the i*® row of
matrix K. The number A(K) is usually referred as the /oca/ bandwidth of the i® row of
matrix K, and is equal to the pumber of off-diagonal entries between the first nomzero of the

row and the main diagonal. The bandwidth and the profi/e of matrix K are defined as
b(K) = max { ﬂ|<K)' i=1, .0}

and
n
pKy = Z ﬂ,(K)
1=1
respectively. The ponzero entries of the filled matrix F of K are confined within the local band
of each row. Many ordering schemes have been developed to minimize the bandwidth or the

profife of K.

One ordering scheme commonly used with finite element programs to minimize the bandwidth is
the Cuthill~-McKee algorithm®. Basically, the algorithm 1s a breadth-first technique 1 labelling
the nodes of a graph. Once a finite clement mesh is tranformed into its finite element solution
graph. the algorithm numbers the nodes in the following way.

1. Determine a starting node and number it v,
2. For nodes v, i=l,...,n. find all unlabelled neighboring nodes of the node \A and
number them sequentially in increasing order of degree.
This ordering algorithm is essentially the same as that for geperating a level structure rooted at

the starting node v

In selecting a starting node, a peripheral node is preferred'’. The i1dea of choosing a peripheral
node as a starting node is to generale as many levels as possible in the level structure. since an
increase in the number of levels tends to decrease the profile of the corresponding matrix.

Unfortunately, existing algorithms for finding a peripheral node are not computationally feasibie. 4

A compromise that has been suggested is to choose a starting node with high eccentricity. Ths
node is generally referred as a pseudo-peripheral node. An efficient algorithm to find a
pseudo-peripheral node has been suggested and implemented by George and Liu'®. For most
practical cases, the execution time for finding a pseudo-peripheral node is no greater than

O(IE}), ie., the order of the number of edges in the graph G=(V,E).

George ct.al.’’ have shown that if linear insertion is used for sorting the time complexity for

the second step of the Cuthill-McKee algorithm requires ai most
(41E} + 2cm|E|) operations,

where {E| is the number of edges in the graph G, m is the maximum degree of any node, and ¢

1s some constant.

It has been discovered that significant improvements in minimizing the profile can be achieved
by sumply reversing the node ordering obtained from the Cuthill-McKee algorithm®. The resulting
algorithm is the well known reverse Cuthill-McKee (RCM) algorithm, which can be summarized
as follows :

1. pumber the nodes by the Cuthill-McKee algorithm: and

2. reorder the nodes by reversing the node numbering obtamned tn Step I.

To reverse the ordering of n nodes requires only n operations. Therefore, the overall complexity

of the RCM algorithm remains bounded by O(m E).

It has been proved by Liu and Sherman that the RCM algorithm is never inferior to the
Cuthill-McKee algorithm'®. In its application to finite element ordering, they also found that the

RCM algorithm is particularly superior when finite elements of higher orders are used.

A listing of computer subroutines for the RCM algorithm can be found in referemce 12. A

more detailed description of the algorithm can also be found in that reference.

10

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING
In this section, we present a ""two-slep” approach to fimite element ordering. The ordering
process is divided into two separale tasks. The first task orders the finite elements in the finite

element mesh. The second task then labels the nodal variables.

Representation of Finite Element Connectivity

The method to be described requires an explicil representation of the connectivity of the fimite
clements in the mesh. The conmnectivity of the finite elements can be topologically represented as
a graph; we call this graph a finite e/ement connectivity graph, or. simply, a connectivity
graph. The nodes in the connectivity graph correspond to the finite elements in the mesh. The
edges of the comnectivity graph are used to describe the interconnections between the finite
clements. One possible way to define the interconnections between the finite elements is to say
that two finile elements are adjacent if they share a common node in the mesh. This definition,
however, may lead to a buge number of edges in the connectivity graph. Since the efficiency of
most existing ordering algorithms is a function of the number of edges in the graph. ths
representation of finile eiement connectivity may suffer a significant drawback in terms of the
execution time required for ordering the finite elements. Here, we examipe an alternative
definition in which the number of edges in the finite element connectivity graph can be vastly

reduced.

In finite clement metbods, a continuum is subdivided by imaginary lines or surfaces into a
number of finite elements. These elements are assumed to be intercomnected at the vertices
situated on their boundaries. Therefore, it is simple to assert that the finite clements are
topologically interconnected by their boundaries. A finite clement of n dimensions. where
n = 1.,2,3, posseses boundaries of (n-1) dimensions. For instance, the boundaries of a 3-
dimensional (volumetric) finite element are the 2-dimensional boundaryv-faces, so that mn a 3-
dimensional continuum, the volumetric finite elements are interconnected by their boundarv-faces.
In the same fashion, 2-dimensional (planar) finite elements are bounded and intercomnected byv
their [-dimensional boundary-lines, and 1-dimensional (linear) finite eiements are connecled lo

their adjacent elements through the O-dimensional boundary-nodes. Hence. in a finite element

11

mesh, two finite elements are said to be adjacent if they are connected at their boundaries, rather
than at their vertices. Using this definition, the nodes in the finite element connectivity graph are
the finite elements in the finite element mesh, while the edges connmecting the nodes 1n the
connectivity graph correspond to the imaginary boundaries of the finite elements separaling the
continuum. Examples of finite element meshes and their associated conmectivity graphs are shown
in Figure 3. For a two-dimensional (planar) continuum, it is interesting to note that the finite
clement connectivity graph is analogous to the dual of a planar graph®, with the exterior node in
the dval graph omitted. In genmeral, the element-element connectivity relationship is topologically

equivalent to the definition of a dual of an n-dimensional complex: 3,

In some cases, the connectivity of finile elements cannot be compiletely represented using the
definition given above. As shown in Figure 4(a), n-dimensional finite elements may not
necessarily be connected through all their (n-1)-dimensional boundaries. Another example may be
that the adjacent finite elements do not have the same geometric dimensions. as illustrated in
Figure 4(b). Nevertheless, the transformation process described is still valid and applicable to
these cases; the resulting finite element connectivity graph may at worst become a disconnected
graph. Each connected component in the comnectivity graph can be labelled independently by the
method presented. The nodes at the interface between two connecled components must then be
numbered higher than all other nodes in the two components. The examples just described are not

very common in practice, and will not be pursued further.

There are several major advantages in defining the connectivity of the finite elements by means
of their boundaries, instead of their nodes. First, the number of edges in the connectivity graph
is minimized. Furthermore, this definition completely disregards the nodal variables, or vertices.
in the finite element mesh. Therefore., the ordering of finite elements can be performed before

the types of finite elements. and thus the number of nodal variables, are chosen.

Ordering the Finite Elements

Once the adjacency structure of a commectivily graph bas been established. the Cuthill-McKee
algorithm can be applied to number the nodes of the connectivity graph, which correspond to the
fimite elements in the mesh. An example of a 5 by 5 regular mesh with triangular finite
clements is shown in Figure 5(a). The mesh 1s first transformed inlo its conmectivity graph
shown in Figure 5 o). The nodes in the conneclivity graph are ordered by the Cuthill-McKee

algorithm. The resulting ordering of the finite elements is given i Figure Scc).

As notel. earlier. the tme complexity of the Cuthill-McKee algorithm 1s a function of the
oumber of edges mm a graph. For a given finite element mesh, the number of edges in the
associated comnectivity graph is considerably less than the number of edges in its fimile element
solution graph defined previously. When higher order finile elements are used. the difference 1s
even more dramatic, since the number of edges i a finite element solution graph increases
combinatorially with the number of nodal variables per finite element. On the other hand., the
pumber of edges 1n the finite element conmectivity graph remains constant for a given

discretization of the finite element mesh

Let the finite element mesh consist of ne finite elements. and let nb denote the number of
)

boundaries of finite element i. The overall ume complexity of the Cuthill-McKee algorithm,

following from the previous discussion, is O(m/E!), where m 1s the largest value of nb.

1
1 = 1, ... ne, and JE| 1s the total number of internal boundaries nterconnecling the finile
elements.

Ordering the Nodal Variables

A good ordering of the finile 2lements does not automatically guarantee a good node ordering.
in the sense that the number of fill-in entries 1s minimized. The ordering of the finile elements
does not complete the ordering of K. as the nodal variabies associated with the element do not
acquire labels by this process. Therefors, one must aiso consider the ordering of the nodal
variables. The proposed strategy 1s io label the nodal variables of the finie elemenis following

the order in which the finite eciements are numbered. For each finite element, the nodal variables

. rowel

13

are ordered according to their valencies. where the va/ency of a node is the number of finite

clements incident at that node. The nodal valency is an indicator of the degree of a node.

The local ordering scheme to label the nodal variables is summarized as follows :

1. Determine the nodal valency for each node in the finite element mesh

2. (Main loop) Enter the finite elements one at a time following the order in which the
finite elements were previously numbered by applying the Cuthill-McKee algorithm to
the conmectivity graph. For each finite element, find all unlabelled nodes connected
to it and number them sequentially in descreasing order of their valencies.

3. (Reverse ordering) Reverse the ordering of the nodal variables obtained in Step 2.

In Step 2 of the local ordering scheme, a nodal variable with mimmum valency among the
unlabelled nodal variables in a finite element is numbered last. The node ordering obtained is
then reversed in Step 3. The motivation behind these two steps is that the nodal variables with
the lowest valency in a finile element will be eliminated first. This strategy of minimum degree
(valency) ordering has been employed in many popular node ordering schemes, such as the
minimum degree ordering algorithm'® and the Cuthill-McKee algorithm®, although the strategy is

used in a different manner in different schemes.

It has been mentioned that by reversing the node ordering obtained from the Cuthill-McKee
algorithm, the result can be improved significantly. This property is also true in the local
ordering scheme proposed. First, reversing the numbering of the wnodal variables which are
ordered in decreasing order of their valencies ensures that internal nodal variables are oumbered
before the external variables of the same element, so that the internal nodal variables are
chiminated before the exterpal nodal variables of the same finite element. Hence, there will be no
fill-in created when eliminating the internal nodal variables. This ordering strategy also has the
property that the nodes situated along a boundary are pumbered and eliminated before the corner
nodes of the same boundary. Thus is because the corner nodes are in general connected to more
finite elements than the nodes located along a boundary. The nodal numbering produced by the

proposed scheme for a simple example of a 5§ by 5 regular mesh consisting of 10-node triangular

fimte elements is shown in Figure 6. The two properties just described are clearly demonstrated

14
by this example.

For step 1. given the element-pode incidence table -- a listing of the nodes incident on the

finite elements -- the determination of the nodal valencies can be done in exactly
ne
'T! = I nv operations,
i=r
where v, is the number of nodal variables of the i'® finite element, me is the pumber of finite

elements 1n the mesh, and |T| 1s the size of element-node incidence tabie.

To implement step 2, a lipear insertion may be used to sort the unlabelled variables of each
finite element. For some conmstant ¢, the sorting of nv elements by linear insertion requires
1

c(nvlz) operations’. Thus, the time complexity of Step 2 of the algorithm requires at worst

ne ne
(2 nvl) {c(X nv)nv =ciTinv operations,
.] . 1 max max
i=1 i=]
where nvm = max(nv), i=l,..ne. The number of operations required lo reverse the node
X H

ordering equals to the number of nodai variables, nn, in the finite element mesh. Hence, the
time complexity for numbering the nodes, given the ordering of the finite elements, 1s bounded by

(O(|T'av) + nn).
max

EXPERIMENTAL RESULTS
In this section, we report some experimental results comparing the reverse Cuthill-McKee
algorithm and the two-step ordering algorithm. Four finite element models have been selected as
examples. They are : (1) a § by 5 regular mesh with triangular finite elements: (2) an L-
shaped mesh with triangular finite elements; (3) a cross-sbaped mesh with rectangular finite
elements; and (4) a 2 by 2 by 2 model consisting of rectangular block finite elements. These
models are shown in Figure 7. For each model, lmmear, quadratic and cubic finile elements have

been used. There are altogether twelve test cases.

The computer subroutines for the RCM algorithm have been adopted from the Sparspak package
developed by George and Liu at the University of Waterloo® and listed in Reference 12. These

subroutines include finding a pseudo-peripheral node of a graph and ordering the nodes by the

RCM algorithm. The input information to these subroutines is the number of podal varables and
an adjacency structure pair representing the node coanectivity of the solution graph A node

adjacency structure 1s illustrated 1 Figure 8ta).

For the two-slep ordering scheme, the same set of computer subroutines from Sparspak has been
employed to number the finite elements by the Cuthill-McKee algorithm. except that the step for
reverse ordering has been omitled. In this case, the input data for the adjacency structure pair is
the node comnectivity of the finite element connmectivity graph. An example of this data structure
1s given wn Figure 8(b). Once the finite elements have been ordered, the adjacency structure can
be discarded. The subroutine for performing the second step, that of ordering the nodal variables.
1s listed 1m Appendix 1. For this subroutine, the element-node 1incidence table 1s assumed to be

available.

The test cases have been run on a DECsystem 20 computer at Carnegie-Mellon Umniversity. For
cach test case. the execution times for the two-step ordering scheme and the RCM algorithm are
reported in Table 1. To mmmmize timing errors due to a mulli-programmed operating system
environment, the test cases have been run when the computer was lightly loaded. As the results
indicate, the two-step ordering scheme requires much less execution lime than the RCM node
ordering algorithm. except for the cases when linear triangular finite elements are emploved. For
those cases, the execution lmes for ordering the nodes by the RCM algorithm and for ordering
the finite elements by the Cuthill-McKee algorithm are approximately the same. The deficiency of
the two-step ordering scheme 1s due to the second step of labelling the nodal variables. For
cases when higher order finile elements are used. very large amounts of savings 1n execution

times can be achieved.

For each test case, the sxruclur‘es of the matrix factor L resulting from the RCM and the two-
step ordering algorithms are summarized 1n Table 2. mn terms of the profile of the stiffness
matrix, the osumber of fill-in entries and the size of the matrix factor. For almost all cases. the
profiles resulting from the two-step ordering scheme are shightly larger than those obtained from
the RCM algorithm. On the other hand, the two-step ordering scheme, i most cases. leads lo

less fill-ip thaon the RCM algorithm. This result 1s particularly true for finite element{ meshes

whers higher order finits clements are usad.

DISCUSSION

In this paper. a "two-step” finite element ordening scheme has besn iniroduced. la addition ie
the =fficiency achieved, the scheme 1s also hghlv adaptarie 1o various solution methods commoniy

used 1o fionite element analysis.

The major characteristic of the two-step ordering scheme is tha! ordening the finite elements
and ordering the nodal variables are separatad into two independent tasks. The (wo tasks can be
impiemsnlzad as two separale meodules. This property of moedularity providss flexibiiity 1n the
software desige of finmite element programs. For instance. onz cae choose 1o number the finits
elements once the discrelization of the finite elemenl mesh s established, even without the
knowledge about the types of fimile elemenits to be used in wview of current sof'ware
developments 1o generating finite element meshes using graphic preprocesssors. the tass of
numbering the finile zlements can easily be incorporated as an additional medulz 1 the mesh

generator with very little extra cost.

The authors recognize that the two-step ordering scheme presented requiras Iwoe sels of nput

data: one tlo descrive the adjacency of the finile elements and the second for the element-node

incidence iable. These two sels of data can both be generated by 2 messh generator.
Convenlionally, however, only the slement-mode 1ncidsnce table 1s created. In Appendin Il we
present a computsr program to determine the element-slement adjacency structure pair using the
element-node incidence lable as wput. This computer program serves prunarily for illustration
purposes. aod 1s nol meant to be efficient. The authors emphasize that the fimte clement
adjacency structure should be generated by the mesh genesrator. particularly when 2 grarhical

Preprocessor 15 used.

Since the birth of the finite element methods., efforts have bz2en made to dsveiop frale elements
ustng polvmomial interpolation funclions of higher orders. The experimental resulls favor strongly
the use of the two-step ordering schems with mgher order fimite eclemeats. ln manv finile

eiement problems. the [inite elemsnts are progressively modified by using interpolation funciions

17

of increasingly higher order so as to improve the accuracy of the solution. At each modification.
the structure of the global stiffness matrix changes, but the number and the distribution of the
finite elements 1n the mesh often remain unchanged. Examples of these problems are quality
conlrol in finile element apalysis and nonlinear structural anpalysis®'. For this type of problem,
the ordering of finite clements needs only be delermined once. The result can be used to reorder
the nodal variables upon each modification made to the finite elements. Moreover, the step in
ordering the nodal variables by the two-step ordering scheme can be performed much faster thao

a complete re-numbering by the node ordering schemes.

In large scale structural analysis, substructuring is often used to divide the struclure inlo two
or more smaller components, called substructures, which are interconnected at their boundaries.
Topologically, the substructures can be treated in the same manner as finite elements. Therefore,
the strategy for ordering the finite elements may well be applied to the ordering of the
substructures. In substructuring analysis, the extermal nodal variables located along the boundaries
of the substructures are ordered last. As discussed previously, thus characteristic is also embedded
in the node ordering strategy of the two-step scheme. Hence, there is no reason that the two-step

approach cannot be extended to an ordering scheme for substructuring methods.

One of the characteristics of the fronmtal solution method is that the assembling of the finite
elements and the solution process are performed simultapeously. For this solution method, 1t 1s
the numbering of the finite elements that really matters. However, a proper ordering of the nodal
variables for each finite element can further reducs the number of fill-in entries and. thus. the
computation cost of the solution process. In the two-step scheme presented. the strategy 1s to
label the nodal variables foilowing the ordering of the finite elements; then the final node
ordering 1s reversed. As a result. the order o which the nodal variables are lo be elirminaled
ought to follow the reverse order in which the finite elements are numbered. Therefore, by
entering the finite elements 1o the reverse order of their numberings. the assembling and
factorization lasks can also be performed simultaneously. However. unlike the frontal solution
method. where the nodal variables ars arranged 1 an arbitrary order. the nodal variables are pre-

ordered by the two-step ordering scheme to reduce the number of fill-in entries. This pre-

18

ordzring of the nodal variables has the advantage that the dala structure for the matrix facters
can be set up iodependeatly. Throughout the enltire ordering scheme, the structure of the clobal
stiffuess mairix nesd nol exist. With the nodal vanables pre-ordered. one can procsed dirzctly to
cobstruct the dzia structure for the matnx factors using existing symbolic factorizalior algorithms
9 1 Conmsequently, while this two-slep ordering scheme can improve the sofiware modularuty for

finite element programs. many characteristics of the "natural™ fronta! solulion method cap sull be

rstained 1o the solution process.

The authors do not claim that the two-step orderning scheme proposed 1o this paper 1s oplumal
ic mummizing the number of fill-in entries. In facl. 1t has recently besn proved that the problem
of computing the mimmum fill-in 15 NP-complete™. This ordering schems s recommendsd
becausz of 11s efficiency, modulanity and flexibihity, and 1is polential applicatior to various other
finite elemant problems. Most of all, the two-step ordering schems :ncludes the couzsideration of
the underlying topological structure of the fimile element mesh. and may therefore be rsgarded as

a “'natural” finite element ordering scheme.

ACKNOWLEDGEMENT

This work was supported by the Office of Naval Research under Grant NOQQ4-Te-C-0354,

S

19

REFERENCES

1. Abo. A.V., J.E. Hopcroft and J.D. Ullmann. 7The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, 1974.

2. Arany. 1, and L. Szoda. An Improved Method for Reducing the Bandwidth of Sparse
Symmetric Matrnices. Information Processing 71, Proceedings of IFIP Congress ~1, IFIP,
August, 1971, pp. 1246-1250.

3. Branin, F.H. Jr. The Algebraic-Topological Basis for Network Analogies and the Vector
Calculus. Tech. Rept. TR 00.1495, Systems Development Division, IBM. July, 1966.

4, Cuthill, E.. and J. McKee. Reducing the Bandwidth of Sparse Symmetric Matrices. Proc.
24th Nat. Conf. of the ACM. Association for Computer Machinery. 1969, pp. 157-172,

5. Deo. N.. Graph Theory with Applications to Engineering and Computer Sciernce.
Prentice-Hall, Inc., 1974.

6. Duff, I.S. Recent Developments in the Solution of Large Sparse Lipear Equations. In
Computing Methods in Applied Sciences and Engineering. R. Glowinski and J.L. Lions.
Eds., North Holland Publishing Company, 1980, pp. 407-426.

7. Eisenstat. S.C., M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale Sparse Matrix Pacsage
1. The Symmetric Codes. Research Report 112, Dept. Of Comp. Sci. Yale University, July,
1977.

8. George. A. Computer Implementation of the Finite Element Method Tech STAN-CS-71-
208, Computer Science Dept., Stanford University, 1971.

9. George A., and J.W.H. Liu. User Guide for Sparspak: Waterloo Sparse Linear Equations
Package. Research Report CS-78-30, Umiversity of Waterloo, 1978.

10. George, A., and J.W.H. Liu. "An Impiementation of a Pseudo-Peripheral Node Finder.”
ACM Trans. on Math. Software 5 (1979), 139-162.

11. George, A., and J.W.H. Liu. "An Opuimal Algorithm for Symbolic Factorization of
Symmetric Matrices.” S/AM J. Comput. 9, 3 (August 1980). 583-393.

12. George, A., and J.W.H. L. Computer So/ution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc.. 1981.

13. Gibbs. N.E.. W.G. Poole Jr., and P.K. Stockmeyer. "An Algorithm for Reducing the
Bandwidth and Profile of a Sparse Matrix.” S/AM J. Numer. Ana/. 13. 2 (April 1976,

14. Iroms. B.M. A Frontal Solution Program for Finite Element Analvsis.” /mternational
Journal for Numerical Methods in Engineering 2 (1970), 5-32.

15. Law. K.H., and S.J. Fenves. Sparse Matricss. Graph Theory, and Reapalvsis. Proceedings
of the First Internmational Conference on Computing in Civil Engineering, American Societly of
Civil Engineers, 1981.

16. Liu. W-H., and A.H. Sherman. "Comparative Analysis of the Cuthill-McKees and the
Reverse Cuthili-McKee Ordering Algorithms for Sparse Matrices.” S/4AM J. Numer. Anal. 3.
2 (April 1976). 198-213.

20

17. Maurer. W.D., and T.G. Lewis. "Hask Tabiz Methods.” ACM Computing Survevs 7. |
tMarch 1975, §-19.

18. Rose, D.J. A Graph-Theoretic Study of the Nemerical Solulion of Sparse Positive Definste
Svstems of Linear Equations. 1u Graph Theory ancd Computing. R.C. Rzad. Eé..Acadsmic
Press, 1972, pp. 183-217.

19. Rose. D.J., R.E. Tarjan, and G.E. Lueker. “Algorithmic Aspscts of Vertex Elimination ot
Graphs.” S/AM J. Comput. &, 2 tJune 19763, 260-233.

20. Speclpenning, B. The Genperalized Element Method. Tech Rept. UIUCDCS-R-78-946, Depl.
of Computer Science. Umiversity of lllinois at Urbana-Champaizn. November, 1978,

1%

21. Szabo. B.A.. P.K. Basu and D.A. Dunavant. Quality Control in Finile Element Analvsis.
Procezedings of the First Internationai Conference on Compuling i Civil Eagineerning. Anmerican
Society of Civil Engineers. 1981,

22. Tarjan, R.E., and A.C.C. Yao. "Storing a Sparse Table.” Communicstions of the AZM
22. 11 (November 1979), 006-611.

23. Veblen. O.. Colloquium Pubiications. Velums V. Part 11, Second Edition: 4nal/ysis
Si/tus. American Mathematical Socrely. 1931

24. Yannaxakis. M. “Computing the Mimumum Fill-in 1¢ NP-Complete.” S/AAM J. Alg. Orsc.
Metn. 2. 1 tMarch 1981, 77-79.

21
_—Noda o
Voriabie
Edge \
Linear Tricnguiar Element J
Node
L Edge
Nodal
Variable
-
Quodratic Triangular Element
Nodal .
/” Variable Node-~ Eoc;,e
" - >
Linear Rectangular Element
FINITE ELEMENT MESH FINITE ELEMENT SOLUTION GRAPH

Figure 1: Finmite Elcment Moesh and 1te Acoziated
Finite Eliinent Solution Graph

3
i

}

+4

nto LDL

.

ENT

CO¥X

Tt

Se

i

-4
(]
{1
in

=
[}
(1
1

(W] o
[o
P -
. o1
1 ot
o o
. 1 [-
Ve o~ O
X o« .‘n
vnw | : p
\ td
-t i N.
+ —_ £ 0
o RIS TN ﬁw
— Ty e x —~ ".
-~ Ll ad (9] ®
o O - u
D; k Il .l be
19 = .
2 — o 0 =
LX T 1 Y [[# N
s + o3 b
et qoE » [P ‘“
o] -~ o0 0 u
" (O R w0 s
- .-
RN A ! SR
0O W PO ¢) a
-1 leom i e ¢
0l « Q
v~ M
e)
~
i '
{1}

@]
[F3]

23

o 4 — Finite Etement Mesh
¢ X
\ \

\ \e—1}___ Finite Element Connectivity Graph

PN >

~

7 S

{a) Finite eleinent mesh with triangular elements

- _T_-ﬂ le— ——Finite Element Mesh

) !

! 1

1 |

! k———————— Finite Element Connectivity Graph
-4

(b} Finite element mesh with rectapncular elements

le— 3 - Dimensional Finite Element Model

—=|~——f{e=___1 - Finite Element Connectivity Graph

{c) 3-dimcnsional finite clement maode) with
rectangrular volumetric ciements

Fieure 3: Finite Elernent Model and 1ts Ascoicated
Finite Element Counnectivity Graph

)
ﬁ / ///4

/////‘VIS1

/

a) Finite eicment mesh with n dimensionat
elements connected through boundaries
other than those of (n-1/ boundaries

Linear
Elemant

Wi/ AN
//4/// V) ..
/7//// 7/

by Mesh with finite ciernents of different dimensions

Figure 4: Finite Element Madels with Uncommon Connestinities

r’”‘ - PR —- p—
25
{a' A X by 2 finite element grid () Connectivity graph of the
3 by 3 finite element grid
50 48 44 38 30
49 46 414 34 25
47 43 37 29 20
~d
M as 40 33 24. 16
Element
N b 42 36] 28 19 12
umber 39 32 23 IS 9
35 27 I8 1] 6 -
31 22 14 8 4
26 I7 10 5 2
21 13 7 3 1

() The ordering of finite clements

Figure 3: Ordering the Finite Elements by
the Cuthill-MceKee Alrorithm

MU vy ey IPON -1 {Ilm
HSAA demiay ¢ {q ¢ w o Sunapag) WON YL 0 daniy

I AT TS A T R AR (I AR TR IV I TR RV (T

- . g . Y . , 1 LI 3
see/erz Tere T/ gre [onz Swe ey Teor Son Soer T

Y .
Wy hrZ ree

y
vt/ eet vz Jevy/ wee cee [9eg/ viz faer Pen e *oar teon Lo *sur ton

HGE e g “ed oo Hud Uil L aT

iAo tize

PR ciy *ay 06 Gt

e tozg eor *onn tee

/ey Yee vl

vEC v Vo [N [4'))

ult Ll 1Y

. y [] . ~
(8974 0L/ 90 | uyal TLy [} ¢S [T v
Yoo noe Cver Tow e Te e *or he

- - ——e -
BONG:_cz_vm_af_Om—

101 Ly vy Gy

b
*uor/ oy Tavt * e/ ez Tor ®ze ve e sz St we

>
oo Feor *evi Tov/ vzt Yo (oo o8 ' 9 LE o¢ yi)

) [1_‘7_ e 86 66 [del} <9 93¢ 99 He B3I 6t (11} (074 (e

. b . 4
teey ey uen Los e e Tes Cov Auv tee e A b Y 6 w

[6 6 g6 a4 0g Q9 He 6l [(4]} [Ht

o
-

e Y

L

(i) linear element

(i1) quadratic element

BN

(iii) cubic element

{a) £ by 3 regular mesh with triangular finite elements

<> N

(i) Yinear element

N

(ii) quadratic element

e BN

(iii) cubic element ﬂ

{b* L~shpacd mesh with triangular finite elements

. Ficure 7: Finite Element Models

LA

(i) linear element

(ji) quadratic element

4

& Py

(ii1) cubic element

(¢) Cross-shaped mesh with rectangular finite elements

(i) linear element

® 4

s + ¢
J 0‘

(i1i) cubic element

(d) 2 by 2 by 2 block with volumetric finite ciements

Figure 7: Finite Element Muodels (cont.)

Py

U ~ o—— -
29
nolde rnutber No3e EZ5. noces
AY
\
Y
4 z € 2 zZ 4
2 1 & 5
2 2 E E
4 l 2 35
1 z K] s 2 3 4 ¢
6 3 &

(i) Finite element
sclution graph

Node No.

(1i) Node connection table

O I CO L LT
IA 2 [a 2 [a]e]s]2f =l e[1] 2]sl2]s]a]e]:]c

(i11) Node-node adjacency structure pair (IA,JA)

(@) Adjacency structure pair of finite element solution graph

(i) Finite element

Element Adj. elements
S::Z\ ,;: b II
I1 I II1I
(:) (:5 IIT II Iv
Iv I11

(ii) Element connection table

connectivity graph

Element No. I 11 I11 Iv

K JIKEK

12 t

JA [Iigril AI}IIiriIIxJ IV lIII I

(i11) Element-element acdjacency structure pair (IA,JA)

(b} Adjacency structure pair of finite element connectivity graph

Figure 8: Examples of Adjacency Structure Pair

(441

290°0 [4) ot 4 Z61 GE) (4 24Qhd ®201Q
Z1'0 0} 8 4 18 18 o]4 “penb 8 T Aq
620 v [4 4 vi LT v Jesul | T Aoz
g1 0 85 or LX) 6iE §85 r4} 24qNnd ysow
[4 >80 Sy Le gi vy Sve] “purb 96 podeys
58°'0 6T [N g1 ve 96 [Jdeoauy | -5S04)
&) 0 oL iv 62 £LE LLS o]} 21qQnd usew
€Ev'O 8y 64 62 [SY 59t 9 ‘punb ory padugys
L8’ cy v 6T 4 cL € Jdeauy -1
640 L Ll 0]} Svi 96z (o]} 24aQnd Us s
€y 'O oz 0l [o]} 514 X4} 9 ‘penb 06 Je(ntiay
804 €4 € ol zi 9g [FUETTN 5 Aa g

Buyudpag OGuysapao {Jusw) SUOY)} JUdBWaie JUIK S iuaw

wWld / 1230} apary Vuawd | 3 wyilyaafije -enbi Jud TR TR
days-omy - - - WO 40 Sopou s0 J0 1enop

(D25wW) BwbLyIS J31S-0M| “ON 40 "ON BdA| "ON

pue mIodly JNIY o) (33St) dunj uonnIIXF :f qe]

aMaYdG Bundpa daig-omj

e

31

- - ‘fﬂ
1

S9°0 8y’'0 00" cyce ze8 916V Si16v pOLY 916V ziee SEl (4 a+Qnd 1201 Q
€8 'O 0S°'0 0014 LIS 60C €Z81 [41} (X4 £€zel zoz '8 (¢T4 ‘punb 8 T Aa
L8°0 85°0 00y 002 (44 oee ottt [AA (61504 211} LT v Jeaug z Aa ¢
G660 16°0 8T} 080Ct 8TLL 88LZC 608EC1 LGve 4913 TSES 698 (4} J1qQnd (saw
L6°0 S56°'0 8T 1 81 vS (X424 % gic6 v09S :1e3°4 tBlL 961 ¢ SvE] ‘penb 96 Uwﬂm:m
86°0 L6°'0 €74 8501 9v9 coLy 1801 699 86C1 (AN 4 96 1 4 Jeau| (-§504)
18°0 EL"O vO'4 09L11 89EL 114G 96vvL PO104 1:1:34 4 (4137 LLS (o]} 21aQnd ysauw
66 0 86°0 90" 09I v v98T 1334 80CZyv ciel [:{eT A4 9621 69Z] ‘penb 0Zy pedoys
860 L6°0 86°0 66V Loe 66V [e]% 8ic 016 61 £L € Jeauy | -1
08°'0 v9'0 660 gice BSvi ottr oviy [0:7 44 oriy 098} - 17 4 [o]} 219N usow
G6°0 16°0 vO ' ‘e 9LS SETI 681! vES 6814 866 (¥4 9 ‘penb 05 JywinBa.
[s oA [o/ongy] 00 sG) (023 GG} GG oL SSi S8 9c € Je3U} | 6 Aa g

Uip-1tes -1t Up-ttes N 40 SUO|) IUBMB S JUBW SIUBW

111 40 "ON ®11304d 11} 40 "ON_311404d_}1V} 4O "ON B|}404d Nuy -enb3y Juad -813 -a43
~ souszZUOU jo sapou j0 40 tepon

Woy/deys-omy :0j3ey aweyds days-om) wyrtaoble woy 4O "ON "ON JO "ON @8dA] ‘ON

awayag JurapiQ ._Em.-oih a1 pue witodlv WO

Y] wouj Junnsay 1 Joideqd XINEY JO 3INONNS T Aqe}

i s

[
[}¥]

Appendix I. Fortran Computer Program for Labelling the Nodal Variables
Given the ordering of the finite elements, the subrouline listed below labels the nedal variablas

in the finile elemen! mesh

C/Rtl!%l!tk!t**!Rx*k!lll*t***Rktt't*!!kkﬁ!*ki*!t!t*lt!l*tkktxKk!n’!tllk*”

C/x =
/= Subroutine NODORD : *
C/* Given the order:ing ¢f the finite eiements, ELPX, *
C/x this sukroutine NCDORDZ labels the nodal variables *
c/= as follows *
c/x 1. Determine the valency ¢f each node, given the b
/= element-node incidence table INC *
/e 2. Label the ncdes ©f each finite element, -n ZJecreas:ind x
C/» order of their valencies (linear inserszicn iz used) *
C/* 3. Reverse the node ordering obtained frcm sted 2. x
C/a x
C/x Input Variables : *
C/=x INC - node-elenent INCidence table *
s/ ELPM - Element PerMutazicn vector *
C/x NV - Number of VertiZes :in uhe f;r;-e element mesh *
T/ NVE - Number cf Vertices ; Tlemerns x
C/x NE - Number of firnite El ~he mesh x
:/’ *
C/x Qutput Variables : x
C/= PERN - node PERMuUtation vector *
C/a x
C/x working Variables : *
C/ INVP - INVrse Permutation vector x
o/ NDVL - NoDe ValLency vec:or x .

o/
C/k**l*'k**l*!!*ﬂ*'ﬁ***l!**ﬂ*kKXR*!!!!***S*X*****!!Q!%l!!!txxt!txlﬂ**ﬂklﬂ*
UBROUTINE NODORD(ELPM, INC, PERM, INVP, NDVL, NV, NVE, NE)
*VDu CIT INTEGER (&~ 7)

DIMENSICN INC(NE,NVE), RM(NV), INVP(NV), ELEM(NE), NDVL(NV)
/=
c/= Initialization
C/

DO 10 K = 1,

PERM (K) O
INVP(K) o}
NDVL (K) 0
10 CONTINUE
c/»
c/» Cetermine node valency
T/ =
Do 2¢ 1 1,NE
20 20 ¥ = 1,NVE
NODE = INC{I,K)
IF(NCDE.EQ.Q) GCTO 20
NDVL(NODE) = NDVL(NODE) +
22 CONTINUE
C/
C/ > Enter the elements sequentially fcliowing therr criderings

C/=
NETNCD = 0O

PP

110
o/
C/»
C/*

c/»

120

140

150
c/=
C/x
c/=

(V33
L

DO 150 I = 1,NE
ELEM = ELPM(I)
START = NXTNOD + 1
DC 110 K = 1,NVE
NODE = INC(ELEM, K)
IF(INVP(NODE) .NE.0.OR.NODE.EC.0) GOTO 110
NXTNCD = NXTNOD + 1
PERM (NXTNOD) = NODE
INVP(NODE) = NXTNOD
CONTINUE

Local node ordering : nodes are sorted in decreasing
order of their valencies using linear insertion

TART .GE. NXTNOD) GOTC 130

)
all
_~®
n o+
[

PERM (K)
= NDVL (PERMK)
IF(L .LT. START) GOTO 140
PERML = PERM(L)
NDVLL = NDVL(PERML)
IF(NDVLL .GE. NDVLK) GOTO 140
PERM(L+1) = PERML
L=L-~1
GOTO 130
PERM(L+1) = PERMK
IF(X .LT. NXTNOD) GOTO 120
CONTINUE

Z,

(=}

<

IS

~
I

Now, reverse the node cordering

KMID = NV/2

J = NV

DO 180 K = 1,KMID
I = PERM(K)

PERM(J)

I

PERM (K)

PERM (J)

J=J -
CONTINVE
RETURN
END

N

Appendix Il. Fortran Computer Program for Generating the Adjacency Structure Pair of :
Element~Element Connectivity

Given the elemenl-node 1ncidence lable, the following set of subroutines dzlermines the

adjacency structure pair of eclement-element comnectivity of an arbitrary finile element mesh |
These subroutines are inciuded only for illustrating how the element-slement adjacency mayv be
generated if the mesh generator produces only the element-node incidence table. The subroulines
are not efficient in storage, 1n that space is provided for the entire symmetric node-pode
adjacency table, denoted by NEL. Since this tabie 1s verv sparse, the function HASH couid be
replaced by one that exploits sparsu.\"" (and the variable NEDGE reduced accordinglyy, or other

efficient techniques for storing sparse lables may be used™ .

C/*X%%*!*!l!!k!**ﬂ!*tRi!ﬂ*R!R***x!kt*RX*!RR’*RR**II*I**!!*t!tx!tx!!t!!’:!!

| C/x *
l C/= Subroutine SETUP x
[/= Purpose : SETUP -s the main subrcutine tC generate the *
f T/ element-eliement adjacency structure from the *
| T/ element-node .ncidence table, INC, for a planar x
} c/* finite elemen: mesh. N
C/x *
/= Inpus Variakles : *
C/» INC - element-ncde incidence zable *
C/x *
E T/ Glebal Variables : »
: /= NE - no. ¢©f elements in the mesh *
. T/ NV - nc. ¢f nodes in the nesh N
E T/ NVE - nc. of nodes per elemen: x 1
. T/ NEPLSI - (NE ~ 1) *
} C/» NEDGE - pessible maximum ne. ©f edges in the solution gragh »
| o/ (= NV = (NV=-1) / 2) *
: T/ EDGMAX - ctctal no. cf edges in the sclut:ion gragh *
C/» EDGFL1 - (EDGMAX + 1) *
T/ NELS - counter Zor the edge-element strulture pair *
T/ MANSUB - max. subscript used in the element-element *
T/ acdjacency structure pair (see surbroutine ELMAZC *
C/» ®
C/» Jutous »
S/ x The element-element adsacent strusture ca.r (IA,JR) is stored =
S/ 0 the array POCL from Locazion LOCIA to (LOCTJA=MANSUE-1). *
T/ The array IA i3 stored in PCOL(LOCIA) to POCL(LOCIA~NE); x
C/= the array S3 .s stored in PCOL(LCCCA) to PCCL(LOCJIA+MANSUB~-L). =
C/! x
C/» Subroutines used : *
C/x EDGSET, EDGBLT, ELMADJ *
C/ *

R R R A AR AR R A A I A AN A A AR AR R AR A AR AR AR R RRRRRKRRARNRARRARRAXNRRRRRR AR
-
seam . gy ey N~ .
SUBROUTINE SETUP(INZ, POCL)
TMDLICIT INTEST (A-Z)

il et . PRy 4.

CIMMON /:Y:T:M/ NE, NV, NVE, NEPLS.

COMMON /GRAPH/ N
COMMON /IQOSET/ :
LCGICAL DEBUG

JIMENSION INC(NE,NVE), POOL(1)

0GE, EDGMAX, EDGPLX, NELS, MAXSUR

-
=] '
N, I0, ZEBUS

C/x
C/= fhase 1 : to set up the edge-element adlacency structure

/=

LOCNEL = 1

LOCSTA = LCCNEL + NEDGE

CALL EDGSET(INC, POOL(LOCNEL), POOL(LOCSTA))
C/ =
C/= Phase 2 : to build the edge-element adjacency
C/x structure pair
C/x

EDGPLL = EDGMAX + 1

LOCEL = LOCSTA + EDGPL1

LCCPOS = LOCEL + NELS

CALL EDGBLT(INC, POOL(LCCNEL), POQL(LCCSTA), PCOL(LCCEL),

* POCL (LOCPOS))

T/~
C/x Phase 3 : to build the element-element adjacency
C/x structure pair
C/=

LOCIA = LCCPCS

LOCJSA = LOCIA + NEFLSL

CALL ELMACJ(INC, POOL(LOCNEL), PCOL(LOCSETA), POCLI(LCCEL),

® POCL (LOCIA), POOL(LSCSA))

RETURN

END
C/'ﬂt!!tﬂ*****%t!ittt%*l*ﬂ?t*!tXt!ﬂ**!!R*!*t*%%t!!t!!k*ll!!!t!tx!!!x**!xk
C/= *
C/= Function HASH *
T/ Purpose : to determine the location of an edge in *
C/= the symmetric ncde adjacency maswrix =
C/x x
/= Input vVariables *
T/ N1, N2 - nodes in the mesh (or grapn) *
C/x x
c/* Qutput Variable : =
C/* HASHE - locaticn of edge (N1,N2) in the symmetr:c node *
C/= adjacency matri *
C/* x
C/lﬂ*"!I****!!**t!*t*!**l*!*!ﬂt*’!**12!*!*!!!!!!’1****'*!Rtl*!!*!!ﬂ*t!x*

INTEGER FUNCTION HASH(Ni,N2)
IMPLICIT INTEGER (A-2)
J = AMAXC({N1,N2)
I = AMINO(N1,N2)

HASHE = ((J-21(3-1))/2 ~ I

RETURN

END
C/ﬁltf'!!.ﬂ’!tﬂﬂ’lt**'tktttﬁﬂ!!It!’tﬁ'*!*t'l*!k!!!**'l!!l!!t!'*xl!!!iilt
/=
C/= Subroutine EDGSET
c/x Purpcse : tc set up counter START cf the edge-element
C/* adsacency s:ructure pair (START, EL)
C/x {ZL will be determined in subroutine ECTGEL
C/x
C/» Input Var.able

(]

.}

»*

»

36
T/ = INC - element-node wncidence :acle x
C/n x
C/x utput Variarles : x
C/x NEL (HASE(NL1,N2)) - edge no. ass:gned to node pair (N1,N2) *
Cc/= { Cnly edges with more than one incident elemen: *
C/* are assigneé¢ a rnumber. } *
C/x START - starting position for the edge-element adjacency =
C/ = structure pair *
/= { START(k+l) - START(X) = no. cf elements acdjacent =
c/= to edge k 1} *
C/* x
C/» Intermediaze Variable : *
/= NEL (HASH(N1,N2)) = in step 1, the array 15 a ncde-adiacency =
C/ = matrix denoting number of elements into edge (NI,N2j =
C/x *

c/!*ﬂl'ﬂl*l*lk!!tﬂ!*l!*klkl!kt*!t!!Rlﬂ!!!tl*ltkkk**tx***l!!l!xR%I!Rall!!!
SUBRCUTINE EDGSET(INC, NEL, START)
IMPLICIT INTEGER (A-Z)
COMMCN /SYSTEM/ NE, NV, NVE, NEPLS1
COMMON /GRAPH/ NEDGE, EDGMAY, EDGPLY, NELS, MARXSUB
DIMENSION INC(NZ,NVE), NEL(NEDGE), STaRT(1)
c/»

c/= Initialization
C/ =
DC 5 1 = 1,NEDGE
NEL(I) = ©

5 CONTINUE
c/
C/= Szep
c/=

[

¢ to build the node adjacency matrix

DO 10 I = 1,NE
NN = NVE
DO 10 J = 1, NN-1
1 = INC(I,O)
IF(N1.EQ.0) GOTC 10
DC 10 K = J+1,NN
N2 = INC(I,K)
IF(N1.EQ.N2 .OR. N2.EQ.0) GOTC 1C
EDGE = HASH(N1,N2)
NEL(EDGE) = NEL(EDGE) + 1
10 CONTINUE

C/=
C/ = Step 2 :
C/» (1) tc set up counter START for the :
c/= edge-element adjacency structure ;
C/x (2) to assign a number to the edges (with twe .
T/ = or more incident elements).]
C/*)
PCSIT = ¢]
NELS = 1
DC 15 I NEDGE

=1,

IF(NEL(I) .LE. 1) GOTO 14
PCSIT = POSIT + 1
START(POSIT) = NELS !
NELS = NELS + NEL(I)
NEL(I) = PCSIT

GOTC 15 4

i4 NEL(I) = 0©

(73}
~J

it CONTINUE
EDGMAX = 2CSIT
START (EDGMAX+1) = NELS

RETURN
END
:/ltl!tl'l!!ﬂRl*l!!t!klﬂlliﬁlﬁ!lil!!ll*l!x!!!-ll!tllllllﬂ!llllﬂl'l'l!ll!l
c/t *
C/= Subroutine EDGELT *
C/* Purpose : to build the array EL ¢f the edge-elemen:t adjacency »
c/= structure pair (START, EL). *
C/‘ =
c/ Input Variables : »
/= INC - element-node incidence zarcie -
T/ NEL(k) - edge no. ass:gned «¢ node pa-r (N1,N2) *
C/» { x = HASH(NI,N2) } *
c/x START - starting pos:tion for the edge-element adjacency x
C/= structure pa:r *
c/x { START(k+1) - START(k) = nc. of elements adjacert *
/= to edge k } *
C/l =
C/* Cu=put variable : x
C/= EL -~ edge-element adiacency structure pair *
C/= { The set of elements incident %C edge k is stcred x
C/» in EL(START(k)) to EL(START(k+1)). } *
C/* *
C/» Werking vVariable *
/= POSIT(k) - pointer to current empty positicn in EL for edge k »
C/n x
c/ltttlttkttQltR!k’tt!'ﬂkl*t!t’tﬂ**t”ﬂ’l‘!ﬂt!l)ttﬁﬂﬂ"tftt.l!?*lk*!l**ttk

SUBROUTINE EDGBLT(INC, NEL, START, EL, POSIT)

IMPLICIT INTEGER (A-2)

COMMON /SYSTEM/ NE, NV, NVE, NEPL31

COMMON /GRAPH/ NEDGE, EDGMAX, EDGPLL, NELS, MANSUB
DIMENSION INC(NE,NVE), NEL(NEDGE), START(EDGPLl), EL(NZILS),

* POSIT(EDGMAX)
C/*
C/x Initialize working vector POSIT
C/*

DO 10 I = 1, EDGMAX
PCSIT(I) = START(I)
c CONTINUE

C/»
T/ Fill edge-element adjacency EL
C/*
DO 20 I = 1,NE
NN = NVE
ZC 20 0 = L, NN-1

NI = INC(I,D) tncde NI
IF(N1.EC.0) GOTO 20
DC 20 K = J+1, NN

N2 = INC(I,K) tnode N2!
IF(N2.EQ.0 .OR. N1.EQ.N2) GOTO 20 ‘check self locp!
EDGE = HASH(N1,N2) tlocation in NEL!
IF(NEL(EDGE) .EQ. 0) GOTO 20
EDGACT = NEL(EDGE) ‘edge number!
EL(POSIT(EDGACT)) = 1 rassign I t¢ EL!
PCSIT(EDGACT) = POSIT(EDGACT) + 1 tupdate PCSIT:icn!

20 CONTINUE

38
RETURN
END
C/I!t!i*ltt*k!!kt*.R**!ltll*tktx*!ttﬂ!**t!kktI**!ttlt*tl!!ﬂl*kl’ttlkl’*!*!
C/: %
C/» Subroutine ELMALJ *
C/= Purpose : toO set up the element-element adjacency structure *
C/= pair (IADJ,JALJ). *
C/' *
C/x Input Variables : =
C/= INC - element-node incidence table =
/= NEL(k) - edge no. assigneé to node pair (N1,N2) *
C/= { x = HASH(N1,N2) } *
C/x START - starting position for the edge-element adjacency *
C/= structure pair *
C/» { START(k+l) - START(k) = no. of elements adjacen: *
C/» to edge k } *
C/=* EL - edge-element adjacency structure pair *
C/= { The set of elements incident to edge k is stored *
C/» in EL(START(k)) tc EL(START(k+1)). } *
C/=» ®
C/= Qutput vVariables : *
C/x (IADJ,JADJ) - element-e.ement adjacency structure pair *
C/a x
c/lt!*tt**%*'!k'l*!!t*!tt***k*ﬁlt*!!*!**!l*ﬂ****tttkk!**kt!kt*ktkﬂtk!*l!t!

SUBROUTINE ELMADJ(INC, NEL, START, EL, IADJ, JADJ)

IMPLICIT INTEGER (A-2)

COMMON /SYSTEM/ NE, NV, NVE, NEPLS1

COMMON /GRAPH/ NEDGE, EDGMAX, EDGPL1l, NELS, MAXSUB

COMMON /IOSET/ IN, IC, DEBUG

LOGICAL DEBUG

DIMENSION INC(NE,NVE), NEL(NEDGZ). START({EDGPLl), EL(NELS),

* IADJS (NEPLS1), TADJ(1l)
C/*
C/* Initialize IADJ(1)
C/= -
IADIJ(L) = 1
C/=
C/= Tor each element, find all incident elements and
C/» queue them in JADJ
C/=
DO 50 I = I,NE
ELMENT = I !for element I!
L1 = IADS(I)
FILL = 0
NN = NVE
DC 40 J = I, NN-1
N1 = INC(I,J) 'ncde N1I!

IF(NL.EC.C) GCTO 40
DO 4C K = J+1, NN

N2 = INC(I,X) tnode N2!
IF(N1.EQ.N2 .CR. N2.EQ.0) GCTO 40 tcheck self lcop!
EDGE = HASH(NI,NZ) tlocation in NEL!
IF(NEL(EDGE).EQ.C) GOTC 40
EDGNUM = NEL(EDGE) 'edge number!
BEGIN = START(EDGNUM) tfor all elements
END = START (ZDGNUM~1) - 1 ! incidens ¢o
DC 3¢ IEL = BEGIN, END ! edge EDGNUM!

EL¥ = EL(IEL) 'a neigh. elemenc!

10
20

30
40

50
C/»

C/*
C/*

80

1000
1100

39

IF (ELM.EQ.ELMENT) GOTO 30
L2 = L1 + FILL
IF(FILL.EQ.0) GOTO 20
DO 10 JJ = L1, L2-1
IF(JADJ(JJ) .EQ.ELM) GOTO 30
CONTINUE
JADJ(L2) = ELM
FILL = FILL + 1
CONTINUE
CONTINUE
IADJ (ELMENT+1) = IADJ(ELMENT) + FILL
CONTINUE
MAXSUB = IADJ(NEPLS1)
IF (.NOT.DEBUG) RETURN

Print ocut results

WRITE(IO,1100)
Do s¢C I =1,NE
Ll = IADJ(I)
L2 = IADJ(I+l) - 1
IF(L2.LT.L1) GOTO 60

WRITE(IC,l0C0) I, L1, L2, (JADJ(K), K=L1l,L2)

CONTINUE
RETURN

FORMAT(T5, 14, TlC, 16, T18, 16, (T30,10I8))
'ELEMENT', T10, 'IDAJ(I)', T18B,

FORMAT (1Hl, T2,

T30, 'JADJ (NEIGHBORING ELEMENTS) :',/)

END

!same as element I7!

tcheck if there

! is a duplication
! in lisc !
!gueue it in JADJ!

tupdate IADJ!

"IADS(I+1)',

L&u&ad | R

UNCLASSIFIED
EECU-‘ITV CLASIIFICATION OF THi§ PAGE (When Daia Entered)
REPORT DOCUMENTATION PAGE R AE L L
' REPCRT NUMBER 2. GOVT ACCESSION NC.| 3 RECIPIENT'S CATALOG NUMBE&
R-81-130 DY B R0
4. TITLE /and Subdsitle) S. TYPE OF REPORT & PERIOD CCVERED
A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING Technical Report
6. PERFORMING OAG. REPORT NUMBER
7. AUTHOR(y,) 8. CONTRACT OR GARANT NUMBER(s)
Steven J. Fenves, Kincho H. Law N00014-76-C-0354
9. PERFORMING ORGANIZATION NAME AND ADDRESS ' 10. PROGRAM ELEMENT. PROJECT, TASK
Department of Civil Engineering ARER S MO UNIT NuuSERS
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
1Y, CONTROLLING OFF|CE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research _ AugustFlPQmS
Arlington VA 22217 ' "“;;“ OF PAGE :
4. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 1S. SECURITY CLASS. (of thie report)
UNCLASSIFIED
18a. OECL ASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repor!l)

Approved for public release; distribution unlimited ‘

17. DISTRIBUTION STATEMENT (o the ebetract entersd in Block 20, 1 dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WQRDS (Continue on reverse gide !f necessary and identily by block number)

Two-step ordering; finite element ordering; sparse matrices; graph-thearetic
approach; solution graph; connectivity graph; Cuthill-McKee algorithm;
RCM algorithm; execution time; fill-in entries.

\3& ABSTRACT (Continue on reveree side if necesesary and identify by bloch number)

A two-step approach to finite element ordering is introduced. The scheme
involves ordering of the finite elements first, based on their adjacency,
followed by a local numbering of the nodal variables. The ordering of the
elements is performed by the Cuthill-McKee algorithm. This approach takes #
into consideration the underlying structure of the finite element mesh, and '
may be regarded as a “natural? finite element ordering scheme. The experimen-
tal results show that this two-step scheme is more efficient than the Y

reverse Cuthill-Mckee alqorithm applied directly tn the nodec in torme .o ‘ ‘

DD ,"5n%, 1473 roimon oF 1 nov esis ossoLETE UNCLASSIFIED ;h

$/N 0102.-LF 014.8601

SECUMITY CLASSIFICATION OF THIS PAGE (When Dete Bntered; '

l UNCLASSIFIED

; SECURITY CLASHIFICATION OF THIS PAGE (When Deta Entered)
? {20 Abstract (Continued)

‘ f both execution time and the number of fill-in entries, particularly when
1 higher order finite elements are used. In addition to its efficiency, the
' two-step approach increases modularity and flexibility in finite element
programs, and possesses potential application to a number of finite element
solution methods.

UNCLASSIFIED

SECURITY CLASSIFICATION OF“THIS PAGE When Cace Enteced)

